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1. Introduction and Background

In many areas, there has been a long-standing need for a multidimensional

2
goodness-of-fit test that is general, in the sense that the X and

Kolmogorov-Smirnov test are general in one dimension, and also, is prac-
2.

tical in a computational sense. Of course, X is still available in any

number of dimensions, but its usefulness and practicality are virtually

nil in high-dimensional spaces.

Take XI,...,X n to be n points in m-dimensional Euclidean space

selected independently from a distribution with density f(x). Define the

nearest neighbor distance Rn from X. as
jn j

Rj = min iXi-X.lx
jn l<i j<n 1

In what follows we suppress the dependence of Rjn and related quantities

on n unless confusion is likely.

The distance d(x,y) between points does not have to be Euclidean.

But we assume that it is generated by a norm ilxi, i.e. d(x,y) = 1lx-y.

This paper started with the attempt to derive the limiting distribu-

tion of a goodness of fit test for multidimensional densities based on the

nearest neighbor distances. We established a form of the invariance prin-

ciple. Our work had two main byproducts: a central limit theorem for

sums of functions of nearest neighbor distances and 4th order moment bounds.

These two pieces were then put together to get the invariance result.

The goodness of fit test:

In looking for a practical goodness-of-fit test applicable to densities

in an arbitrary number of dimensions, our starting point was the observation,

essentially contained in the work by Loftsgaarden and Quesenberry (1965)
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that the variables

U exp[-n f(x)dx] , n

where f(x) is the underlying density, Xl ,...,x n are n points sampled inde-

pendently from f(x) and R. is the distance from X. to its nearest neighbor,

have a univariate distribution that, in any norm 11.11 distance

a; does not depend on f(x)

b; is approximately uniform.

The reasoning is simple: let S(x,r) be the sphere with center at x and

radius r. For any Borel set A, denote

F(A) f(y)dy
fA

Assume X is the first point selected, then the other n-l. The set (R1 >r1I

is equal to the event that none of the X2,... ,Xn fall in the interior of

the sphere of radius rI about XI. Hence

P(R1  >r 1 IX1  :x,) : [ --F(S(x l,rl))]n-1

Since for fixed x, F(S(x,r)) is monotonically nondecreasing in r, write

the above as

PCF(S(R l,xI )) >F(S(r l ,x1 ))IX1  =x I]  = [l -F(S(r l,x1 ))]

Substituting z F(S(x l,rl)) gives

(1.1) P[F(S(xl ,R1 )) >zIX l =xl] = (l-z) n-l

so that

P[F(S(X I ,R1 )) >z] = (l-z)
n 'l
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Since

U1 : exp[-nF(S(X I,R1 ))] 1

we have that for log x > -n,

P(U<1 x) = (1 +1/n logx) ~- x , for x fixed.

The above suggests that a possible approach to a goodness-of-fit

test would be to take the density g(x) to be tested, compute the

statistics

exp C-nfg(x) dx]

S(X. ,Rj)

and see whether, in some sense, the cumulative distribution function of

these n variables is close to the uniform. While this is attractive

theoretically, the computations involved in integrating anything but a

very simple density over m-dimensional spheres are usually not feasible.

We reasoned that for n large, the nearest neighbor distances were

small, on the average, and hence that we could use the approximation

fg(x) dx ,, g(Xj)V(Rj)

4 S(Xj,R )

where

4V(r) = mm

is the volume of an m-dimensional sphere of radius r. In this sav we were

led to testing based on the variabies

4

W3 3 2Cn (j)(j ] ,j~ . .
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An example of a measure of deviation of the W. variables from the uniform

is the statistic

S = (j) -j/n) 2

where W(j), j =l,...,n, are the ordered W. variables. Notice that

S = n (H(x) -x) dH(x)
0

where A(x) is the sample d.f. of the Wj.

The invariance principle:

This leads us more generally to studying the stochastic process H(y):

0 < y < 1, and test statistics based on measures of the deviation of H from

the uniform or, more appropriately, on the deviations of H from its expec-

tation EH. We had conjectured, based on some simulation studies, that

statistics such as S were asymptotically distribution free under the null

hypothesis. More generally, we had conjectured that the limiting distribu-

tion of /n(H(t)- t) was a Gaussian process with zero mean and a covariance

not depending on f(x). Our main result, as given in Section 5, is that

this is almost true. What holds is that for the sequence of processes

!Z Z (t)  =/n(H(t) -EH(t))

n

Zn w Z

where Z(t), 0 < t < 1, is a zero mean Gaussian process whose covariance

depends on the hypothesized density g and true density f, and indeed if

g = f, then the covariance does not depend on f. The proof of this theorem

and other results related to the goodness-of-fit test are given in Section 5.

Defining variables D.n by

Djn = nl/mR.
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then W. has the form.jn
Wj : ,jn)

and, denoting the indicator function by I(.),

Zn(t) =/n(F(t) -EF(t)) =n1n[ I <t) -EI(W. <t)]

3--
n [h(XjD -Eh(X.,D.)]

for an appropriate h.

This identification suggests that the appropriate tools for the

invariance principle are a central limit theorem and moment bounds and

convergence theorems for sums of functions of nearest neighbor distances.

A central limit theorem:

The central limit result established in Sections 3 and 4 is that for

a function h(x,d) on E(m)x[O,-) --E(') such that h is uniformly bounded

and almost everywhere continuous with respect to Lebesgue measure,

Var( I_ n h(XjD ) -- C2 < 0

and

1I (XjDj) N(O, 2 )
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where we make the convention here and through the rest of the paper that

for any function h(Xj,D.)

h*(Xj,Dj) = h(Xj,D) - Eh(Xj,D)

This is generalized to a multidimensional central limit theorem, and used

to give the result that

(Zn(tl),...,Zn(tk) Z t ...,3Z(tk)

Our proof is long. We believe that this is due to the complexity

of the problem. Nearest neighbor distances are not independent. But for

large sample size the nearest neighbor distance to a point in one region

of space is "almost" independent of the nearest neighbor distances in

another region of space. The main idea for capitalizing on this large

scale independence is to cut the space into a finite number of cells. For

any point in a given cell, let its revised nearest neighbor distance be

defined using only its neighbors in the same cell. The first step, then,

is to show that asymptotically the revised nearest neighbor distances can

be substituted for the original nearest neighbor distances. Now, given

the number of points in each cell, the set of interpoint distances within

the Jth cell is independent of those within any other cell. Therefore,

given the total cell populations, any sum of functions of the revised

nearest neighbor distances is a sum of independent components, with each

such component being the sum of the functions of the nearest neighbor

dis:ances within a particular call.
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However, the rnultinomial fluctuation of the cell population is not

asymptotically negligible. Thus, the limiting distribution breaks into a.

sum of two parts, one being the nearly normal sum of the independent cell

components given the expected value of the cell populations. The other is

an asymptotically normal contribution due to the fluctuations of the cell

populations from their expected values. The limiting form of the variance

reflects the nature of the problem. It has one term that would be the

variance if all nearest neighbor distances were assumed independent. Then

there are a number of other, more complex, terms arising from 'the local

dependence.

A moment bound:

Both the central limit theorem and the tightness argument

required for the invariance proof rely on moment bounds. Again,

there is some difficulty in untangling the depenidence between nearest

neighbor distances and proving bounds of the type required.

For example, we show in Section 2 that for any measurable func-

4 tion h on E (i) xCO,co) -~ E 1) with

lrh.i suplh(xd)l <

there is a constant M < - depending only, in a specified and useful way,

on h and the dimension m such that

E h(X oj n
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Both the central limit theorem and the moment inequalities (which

improve results in Rogers (1977)) should prove generally useful in methods

employing nearest neighbor distances.

The plan of the presentation is

Section 2: moment bounds

nd
Section 3: 2 moment convergence

Section 4: central limit theorem

Section 5: invariance and the goodness-of-fit test

Appendix: technical results on nearest neighbor distances

Section 2 on moment bounds is long and somewhat complex. But the

results are needed in the later proofs. The main results of statistical

interest are in Sections 4 and 5.

Assumptions on the densities:

Our general assumptions on the density f(x) are that it be uniformly

bounded and continuous on its support. These requirements can probably

be weakened, but the price may not be worth the extra generality. The

following conditions are listed to make the requirements formal.

A: We can choose a version of f such that

(i) {f>O} is open

(ii) f is continuous on (f>O}

(iii) f is uniformly bounded.

Corresponding to A we have:

B: The given function g is nonnegative and

(i) (g >O} D (f >0}

(ii) g is continuous on (f>0}.

Clearly essentially all situations of interest are covered by A and B.
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2. Some Useful Moment Inequalities

The central result of this section is the 4 th order moment bound

(2.2) which is used to prove tightness via Corollary 2.5 . We believe it

will prove generally useful in the study of procedures based on nearest

neighbors. Its formulation and spirit owe much to the excellent thesis

of W. R. Rogers (1977). Our method of proof is, however, different from

his and suited to the rather delicate estimates we must make.

The proof of the central limit theorem requires only the use of the

nd
2 order moment bounds given in Lemma 2.11 and its Corollary 2.15. The

proofs of 2.11 and 2.15 are given early in this section and the reader

interested only in the central limit problem may wish to skip the rest of

the section.

The following notation is used:

P is the probability measure making XI,.... Xn i.i.d. with common

density f.

E without subscript is expectation under P.

Ri is the nearest neighbor distance to X.

Ji is the index of the nearest neighbor point to Xi.

Di n1 /mR

I(A) is the indicator of an event.

F(A) _ jf(y)dy

S(x,r) ( ty; iiy-xl <r}

Si  S(x i ,Ri )

For h a measurable function on E(m) -[0,-) - E(l), denote

ih11 = sup ih(x,d)l
x,d

hi  = h(Xi,Di)

hi = hi - Ehi



Throughout this section M, with or without a subscript, denotes a

finite generic constant depending only on the dimension m.

Theorem 2.1: If 1lhil < -, then

(2.2) E(i h*) 4 < Mn 2hl 2[E 21hl[ +n4 E 2h l IF 2(S +n- 1h12 ]

Before giving the proof of the theorem we give two corollaries.

Corollary 2.3: Suppose u and w are bounded functions and

h(x,d) = u(x)w(x,d)

Then there is a constant C < - depending on lull, Llw11, m such that

(2.4) E(In 1 hi)4 < C(n2 E 2u(XI)I +n)

Proof: The corollary follows from

E hlI < lwllEIu(Xl)I
2 2 2

EIh I [F 2 (SI ) < lwlIE{Elu(XI )E(F 2(SI)) XI)} liwlEju(Xl 1  2n-

where the last equality follows from (1.1).

Corollary 2.5: If

h(x,d) : I(a<g(x)dm <b)

then

*4 2 2
(2.6) E(ri h.) < M{n (Gn (b) -Gn (a)) +n}

where Gn(y), y > 0, is the distribution function defined by

Gn(Y) = (1-exp(-2-))-!rf(x) -exp[-nF(S(x,(y/ng(x))I/m]dxn 2
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Proof: Let

(x) = F(S(,ng-F-T

6(x) = F(S(x,( b )l/m))
gT7X

Then, for j > 0, defining p, = F(S(x,a)), pB = F(S(x,3)),

E(ih I IFJ(SI)X :x) : E[FJ(S(x,RI)I(p <F(S(x,R=))<p3)JXl :x]

= S uj(n -l)(l -u)n2du

P.

< Mn-J wJ(l _w)n-2dw
np

or

(ep-np epn(2.7) E(IhlIFJ(SI)IX 1  x) < M n-J(e p 2

If we now apply Theorem 2.1 and use (2.7) for j = 0,1 the lemma follows.

The proof of Theorem 2.1 proceeds by a construction similar to one

used by Rogers and a series of lemmas.

We assume that we are given a measurable set S C Rm, F(S) < 1, and

a set of r < n points, x = (xI ... Xr), where the xi are fixed points in

X. Let Qr(.IS,x) be the probability measure on (Rm )n such that Xl,...,Xn-r

are independent identically distributed with their common distribution

being the conditional distribution F(.ISc) and Xnr+ i =l,...,r.

We write F(.ISc) as FS. Its density is, of course,

fs(X) = f(x)/F(S c )  Sc

: 0 otherwise.

We typically write Q for Q (.!S,x), and E to denote the expectation

r r Q
under Qr"

-
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On a common probability space take XI,...,Xn i.i.d. F and YI...,Yn

i.i.d. F(.ISc) and independent of the Xi and define,

' = Xi if i=l,...,n-r and XieS
c

= Yi if i=l,...,n-r and X iS

= Xi.n+ r if i=n-r+l,...,n

Clearly Xl1 ...,Xn have joint distribution Qr' Let R. be the nearest

neighbor distance of X in the set X ,...Xn and Di, i, Si be defined

similarly.

Lemma 2.8: For n > r, there is a constant M such that
0

E. h(X,,0 1 ) E h(XI,0 1)j < hI (_, (s)

Proof: -or r > n/2, the bound holds trivially. For n/2 > r,

(2.9) 1EQr h(XIDI) - E h(X, 01):

r-

(nr n-r[E h(Xi Di) - h( i  1i(l 1 1l1' ii-l

- E n-r h
< (n-r) i E {h(IX,Di) -h(ii,bi) i

) hi ! -r {l(Xi . ) .Z l
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Let

n-r
N =(i ~

the number of "changed" points among the first n-r. Note that EN fn-r)-(S).

Now

r\ IVX^V

and hence

4- I (X/) rX I(J. =k)
k k k

< 2a(m)(N+r)

by corollary S1 of the appendix.

From (2.9) - (2.10) and the boundedness of h.

* ~~.QhjlE h1! +i~{lcr)Fs 2,-,(m)

h Hh2(0+2a(rn))F (S~r

*and the lemma I s proved.
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Lemma 2.11: For Ilgll, IIhIl < , denote hI = h(XlD 1 ), g2 : g(X2,D2)" Then

for n > 4,

Icov(hl,g 2 )I <MilIgI(n-IEjhlj +ElhlF(S)I)

Proof: Write

Icov(h l,g2) I < lhlg 2
IdP + lh lg2 dP

1 9: [J 1 2]J J[J 1  2]1

But

(2.12) Jl=2]Ihlg 2jdP < nhl 1 < 41 ElhlIID =2] 1 -2 - Zk=2 J[dl=k] 1 -1

Moreover,

13) hg dP { hl{E(g2IXl  ,Jl) -Eg2}dP
(2.13 [Jl 2]1X IJx2 -E

On the set J 2, given X1  x, XJ x2 , the {Xj, 2<j<n, JfJ 1; XIXjl}

1 2-1 iX
are distributed according to Q2 (.S(Xl,1X2 xl ),(xl ,x2)). By Lemma 2.8

*Sln _xl'(l +F())dBPLma .

(2.14) lh~g~dP < f~ jh*IM IIgII(2n 1  FS)d

< 4M0 lgll[n-I Enhl +EIh F(SI)I

and the lemma follows from (2.12)-(2.14).

Corollary 2.15: For hIhl, highl < -, and for n > 4,

Icov(h ,g2 ) < M2IigI(Eh2) 1/2/n

Proof: From (1.1) it follows that EF(S) = 2/n(n+l). Now apply the

4 Schwartz inequality.
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The bounds in Lemma 2.11 and Corollary 2.15 can clearly be made symmetric

in h1 and g2 " We use them primarily for

Lemma 2.16: IcOVQ (h 1 ,h 2 ) - coy (h!,h 2 ) I !Ih2 ' 3(n- + F2 (S

Proof: Let (X1", 1 )...,(X ,Xn) have the same joint distribution as the

vector f(Xl, l),...,(Xn, n)} and be independent of that vector. Let

primes on Di,3i,Ji , etc. as usual denote calculations based on the

appropriate sample. Then

(2.17) cov (hlh 2 ) -COV Qr(h1,h2 )

4= = (h1-hl )(h 2-h2 ) - (hl-hl)(h 2 -h2 )

where

h h(XiD') h, Wi  h( i,Di), hi = h(Xi , i )

The proof proceeds by a series of steps.

Let

Ei = hghi}
i I "

E' (h;+h}

Since

(Ei) <I(XitXi) + I(li=li' Ri-Ri)
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LemmT~a A.1 and elementary arguments yield that

(2.18)max(P(E tI E.) P(E. 11 r) a2 ~~~~}<M F2 (S~3 i rk) al/~~~~l< -
( 2 .1 8) 

M2
Since a 0 on C (E~ UE}1 (2.18) and symmetry arguments imply

that

(2.19) EAI i4EhA)h ( 2-1C.1~

+ M ujhf! 2 (r 2 (

* Using lemma A.1 again we bound the first term on the right hand side

of (2.19) by,

(2.20) 4J(h1 l(2h)( J 2 # X=2 Ix1A 1(( ~ RIT 1  ,)}I

+ M il! ( r~.~2

Let (i :X X }. Given EXi, i=,X1 * iX~ ,3 and A xthe

1 1 Ij 1 X2= 2

variables Xi,***,X n can be Permuted to have a

4r( I~ l R1) S R 1 Ix ,'i X
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distribution with X in the lead and r = N+I(XI=XI) + I(XJI=XJI) + I(XI =XMI)

Conditioning on this information within the expectation in (2.20) and using

the independence of h2 we can apply lema 2.8 to the difference between

the conditional expectation of h2 and Eh2 and bound the first term in

(2.20) by

(2.21) 4I1hl1 2 Mo(m) E (I(Xl'Xi) + I(Xl:XIRIRl )

+ F(Sl)+ (S

Estimates of the order F +2(S) for all the terms in (2.21) are given
n ,

in lemna A.2. Combining (2.19) - (2.21) the lemma follows.

Lemma 2.22:

(2.23) IEh*h 2h3 h4 1 < M4 IjhH2hl I 2 2 hlIF2(Sl) + \jhi
2  -3

Proof: Let E12  CJI,J 2 {3,4}], r z hlh 2 h3h4

Then,

(2.24) 1T dP =f hI h2 (cov(h I h2 )
12 12

+ (EQ h1 -Ehl )2}dP

where

= Qr('iS(XI'R )US(X2'R2 ) XI ' X
X , X .};'and r < .

r 
J
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Apply lemmas 2.8, 2.11 and 2.16 to get,

(2.25)~j (Ml uhf nE hl I + E Ih 1 (S1)I )) ~L~~~

E12

Next

(2.26) f ch h 2f h h2
12

+ 21 hI h2[j2=3,Jl (3,41]

Condition in the first integral on the right in (2.26) by Xl ,XJ ,J1 l

and apply lemma 2.8 to get the bound

(2.27) 2Mo IhHj f l h* (n "l + F(SI))dP

-4 4M0  '+h (n'IEfhl [ + EjhlF(SI)f)

by the usual symmetry argument. Condition in the second integral by

X 2X and obtain a bound as in (2.27). Conclude that

Ifr h~h~l <cov(h,,h2) n h 1!nl 2

4
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and hence that the first term in (2.25) is bounded by

(2.28) M II hl 2( 
2 i + Ehi (S ))

On the other hand, applying lemma 2.8 again

(2.29) fhlh2 lj(n" 4- F2 (SI)) 2 I!hi!f[Jl_2].

1 2 f£J1 =23

fh*f(n' 2 + F2 (S1 )){Ejh~j + Mo jjhfJ (n -'  F(S,))l

The first term in (2.29) is < Milh! 2n 3 by the usual syrnetry argument.

The second is
M(E2 jhijn "2  + Elhlj ElhllF2(5l ) )  + lihil 2n'*3

(2.30) < M(2(E 2 hijn 2 + n 2 jh1h 2(zl)) + h 2 n3)

and hence combining (2.28) and (2.30) we get

(2.31) f d -h . 2 hliR(S 1 )12 , dP I M 11IIhll n2 + l hI E2

2 12 2 n2  3

Sn 2 E2 fhljF2 (Sl) + fhfl 2n-

Now consider

* (2.32) ic = dP x-f 2,1]T 2 2 , <TrdP

1 1 3
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By conditioning on XIX 3 ,JIJ 3 ,XJI,X3 we can bound the first inteqral on
3

the right in (2.32) in exactly the same way as j TrdP by,
12

(2.33) M Ihl(hl + E hIF(Sl f J 3 ,h 2 4 } ]h dP!

1HhH12 f Ih h (n -2 + S+ (S))dPj

Now use symmetry to bound

I Jl3'J3{2'4] hl 3

by JnLL Elh{I

and the second term in (2.33) by,

Mj~hI! 4

n3

Hence,.

(2.34) IfJi 3,J3 (2,41 ]T dP_ MI h \ 2I ( hi Eth1 F(S1 )

+ I nhH2 n3)
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Next write,

(2.35) r rdP= f ;.4 TdP + f 3, -2,dP4
j1 3,J3=2] J1 3,J3=2 ,J2 4] 3 2

Now
1 n

(2.36) P[J 1 =3,J 3=2,J 2 =4] = Pj 1 3,J 3 =2,J 2 =i ]

1 3 2 7 1 .4 1 3 2

< (n-3) "1 PCJI=3,J 3=2] < (n-3) " (n-2)- p[Jl=3]

< M n- 3

Hence,

c2.3) If <pl <,' iIhl4 ,-3
(2.37) 3=3,J3=2,J 2 4]

Next condition on XI X2 ,X3,JI J2,J3,RI R2,R3 in the first term of (2.35)

and apply leemma 2.8 to get

(2.38) f T M0  h f (n"l+ F(S1 ))dP
S=d3,J3=2,J 2 4]l 

<  
1 =3,j 3=2]  i:

0

0 .
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NOW,

P[I13, J3-2j < Mn2

as in (2.36) and similarly,

(2.39) f1 F(Sl)dP < (n-2) "I f F(s)dP

J1=3,j3=2] 
- J1z3 )

= C(n-2)(n-l)]
"  EF(S 1 ) < ,In 3

(2.40) r F(S2)dP = (n-2)"l f F(S2)Z I(Ji=3)dP
f!jl =3,J 3 =2] J3=2] i+2,3

< (n-2)-l(m) f F(S2 )dP

[32

by corollary Sl,

< (n-2)(n-l)]'l 2(m) -FS)P n 3

(2.41) fF~(s )dP < C(n,-2)(n-1)]'1 a(m)EF(s3 ,n"

Combining these estimates with (2.38), (2.37) and (2.45) we get,

(2.42) If/d3,d 2r dP1 <MI Ih 114n"3

DJ 3 ,J=2]
|-

4,
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and hence from (2.32), (2.34) and (2.42),

(2.43) if Jl3 .. .... _M1 2 72 :<F(51

+ 2 n 3)

Next consider,

(2.44) f1=, r ,1 7 d P f Tr dP 1 f j2 3
J2 3,Jl3,4] J2=3J =J =

Of these terms the first is bounded in (2.43). The next is written,

(2.45) f dP f [ idPl:J2 = 3 ' J3r 4 ]  LJU , p =3J:4]

The second term in (2.45) is bounded by M!!h ; 4 n-3 as in (2.40). The

first (conditioning on X,,X.,X., etc.) is bounded by

M! h! ,4 f (ni  "(Si))dP

and again by Mih n"  by arguing as in (2.39) (2.41). =or examole,

iFp S dP < : (m) S )d ,  _(.-'I n -1 )n --2)

'S)1 1 77T )n , -
fl -' 2 J  1J=

L% .1 d



25

Final ly,

(2.46) 1 -dP < Hhi ,
Ij[=3,J =4] f [7-3, ,j 3

< (n-3) 'hl

< [(n-3)(n-2)]-l I hj 2 Elh~h;i

<Mn-2 [h[I 2 (E2 jhj + cov(jh*1,1h*i))

_ Mn-2 HhHj2 (E2 hl + IlhlH 2 n")

by ler na 2.11. By our discussion and (2.43) - (2.46),

(2.47) / h - 1 F(51
j12  TP Mi[2(+ 2

Now by the Schwartz inequality,

E1hl JF(S l ) < chl! I'I F ( i

Z2} I  +n 2 F ( )
- 1- . 2-21

n
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The lemma, therefore, follows from (2.31) and (2.47).

Lemma 2.48: For M5

(2.49) ,E[h1] h2h3 , <Ms Ih ( .2_ + nE2jhIF(S1 ) + ILn )

Proof: The argument goes much as for lemma 2.22 and is sketched. If we

denote the integrand by IT

Tr dP I <SMIIhIIf(nl Ejhl I + EIh!F(Sl)Xjl V,3] -

x f h2 2  + 11hH n-2J 42,3]

<MIJhHj2 (n'Elh,( + nE2 hi F(Sl) + Ihi 2 n'},

while

f h]2 h2 h3 dP < Ijh( f Ihlh 3 ldP < Mn'l1hh( hlh2(dP=2a] 1-z 2-

4

<MllhI 2 n 1 (E2 1hl I + n' 111hl 2) arguing as in (2.46).

The lema follows.

4'
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Proof of Theorem: Write

I'.{: *4 *4*2 2
(2.50) E(. hi) <n Eh*] + 6n(n-l) E[h l] Ch2 J2

1

+ 6n(n-l)(n-2) iE~h1j h2 h3 I + n(n-l)(n-2)(n-3)fEhlh 2h3h41

We apply lemmas 2.22 and 2.48 to the last two terms of (2.50); note that the

second term is

< 6n2 1h11 2 (E2IhTl + Icov(lhll,lh21)I)

*4 4
and apply lemna2.11,and bound ECh*] by 161 !hj

The theorem follows.
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3. Second Moment Convergence

The central result of this section is the evaluation of the limit

of Var(L h (XjD)) for a certain class of functions h. Starting with

* -the density f(x), define

y(x) =f(x)-1r

and for any measurable function h on E(m) x[O,oo)-+.E , let

fi(x,r) =h(x,y(x)r)

Define L0, Lis L 2 as functions of bounded variation given by

(3.1) L (r) e- V(r)

(3.2) Ll(rl,r 2) e -V(r1>)Vr 2) rv(r,) +V(r 2) -V(r1 )V(r 2)]

(3.3) L2(rl,r 2 -r1)Vr 2) qelCrr 2 (e Vr,2')-l)dz -V(max(rl,r 2))]

where

B(r1 ,r 2) = {z; max (r, , r2) <_ Iz 1 l +

V(ri,r 2,z) = TS(Or r)S(zr) dy

For any two functions h, h' define the functional L(h,h') by

(3.4) L(h,h') = fh(x1sr )h-(x 2 r ) ifx)Ll(drl~dr )dx dX2

+ f;(x,r 1)h'(x~r )f(x)L (dr,,dr )dx

The moment convergence result is
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Theorem 3.5: If h is measurable on E(m ) x[O,o) --+ E(l) and satisfies

(i) 11hM <

(ii) the set of discontinuities of h has Lebesgue measure 0,

then
Var(- - In h(XiDi)) 2 2(h)

where

(3.6) 2 (h) : Jh2(xr)f(x)L (dr)dx - [h(x,r)f(x)L0 (dr)dx]2 + L(h,h)

As the proof will reveal, the first two terms of (3.6) would be the

limit if the R. were independent. The L(h,h) term is contributed by the

local dependence of the nearest neighbor distances.

The proof of the theorem is split into two pieces. Proposition 3.7

below shows that the diagonal terms in

I n * 2
'(11 h (Xi,D i ))

converge to the first two terms of (3.6). Then proposition 3.20 gives

convergence of the off-diagonal terms to L(h,h). We assume throughout that

the conditions of the theorem hold.

* " Let X, D be a random m vector and nonnegative random variable

respectively such that X has density f and

P[D>rX] = exp{-f(X)V(r)}

Equivalently, D/y(X) is independent of X and

P[D/y(X) >r] = L0(r)
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Proposition 3.7: Let f satisfy A(i)-(iii). Then, as n-,

|. .- ' ' . •(XIDln (X,D)

where (Xl,Dln ) is used to stand generically for the common law of any of

the pairs (Xi,D i) and - denotes convergence in distribution. Therefore

*ill (3.8) Eh(X ,2Dln) - h(xr)f(x)Lo(dr)dx

(3.9) Var h(XlDln) h2(xr)f(x)Lo(dr)dx- (fhx,r)f(x)Lo(dr)dx)2

Proof: Almost immediate, since

P(D>rlX1 =x) -- ef(x)v(r) P(D>rlX=x)

and the set of discontinuities of h has probability zero with respect to

the (X,D) distribution.

Proposition 3.10: For h(x,r) any function satisfying the hypothesis of

theorem 3.5

n Cov(h(X l ,Dl ),h(X 2,D2 )) - L(h,h)

Proof: It is, we assert, sufficient to show for any two functions 1,' 12

of the form
0

(3.11) ,i(xr) = gi(x)I(r >ri) , i = , 2

with gi(x) uniformly continuous and bounded, that

(3.12) n Cov(, 1 (X1,D1 ),,2(X2,D2)) - L( 1 , 2 )

To see this note that if 1 is the set of all finite linear combinations

of functions of the form (3.11) then we can get a sequence hk E:'such that

I1
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IhklI < 211hIl

and with respect to L-easure on E [0,) hk-h a.e. (since h is

a.e. continuous). Now

(3.13)- Cov(h(XI,DI),h(X2,02)) - Cov(hk(Xi,Dl),hk(X2,D2 ))

= Cov(h(X I DI) -hk(X I ,DI),h(X 2 ,D2 ) +hk(X 2,D2 ))

Using corollary 2.15 on (3.13) gives the bound

Cov(h(XlD , 1 ),h(X2',D2 )) -Cov(hk(Xl1)hk(X 2,D2 ))l < cIlhIl(E 2)I/2n

Now the bounded convergence theorem gives E(h-hk ) 2 - 0, and (3.12)

implies that

GoV(hk(Xlo I),hk(X 2,D2)) -- L(hk,hk)

Since L(hk'hk) -L(h,h), the assertion follows.

Proof of (3.12): For i =1,2, let

Si  = S(xi,n- 1/mri ) , Fi  F(Si ) , F12  = F(S1 rS2 )

and let
A = {(xl,x2 ); llx1-X2 11 >n-/m(r +r

B = {(xl,x2); n-I/max(rl,r2 ) <lX x 11 <n-1 /m(rl+r 2)}

C = ((Xlx 2), Ix-X 2 11 <n '/mmax(rl,r 2)
-

Then

F (I-F-F 2)n- , (x ,x2 ) E A

P(R1 >n-
1 /mr1 , R 22n-1/m r2x 1= Xx2=× 2 ) (1-FI-F2+F12)n-2, (xlx 2 ) E 8

0 (xl ,x2) G C

I
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and

P( Ri.n 'rl~ xj) (1F=-

Then, denoting

L(xl,x 2 ,rl,r 2) =P(R 1>n m rRn m r 2X1=xlX22x2) (-Fl(-,]

and gl(xl) by gi, f(x a) by f.,

fg)n-2 r1 n-I )2n- n-

+f glg2 C(l -F1 -F +F 72 )n-2 -(1-FI-F 2 )n 2 ]f if 2

-F r )J- 1f 2

Because ni Th( ri), where ? is the suprenum of f, and nFi -f(x.i)V(ri), for
4 fixed xi, X2  n(--F) n-2 -- (1) 1 ~ )n 1 )

n-2 n2 F : 2 n-2
W(1F 1)2(I-F 2)n2[l 1 -F} (1-F.O(1-F 2)j

-f~x1 )'P -fx)lr) )(ri )+f(x 2 )V(r.2 ) -f(x, )fI(x2 ) V(r, V'(r2 )JI
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Furthermore, the convergence is bounded. Therefore

n I I f"0(x l rl ) o(x2 ,r2)Ll ( d r , ,dr2)f(xl)f ( x 2 ) d x l d x 2

as can be seen by making the transformations V(ri) = f(xi)V(ri).

In I2,I3 make the transformation

m
x2-x I +n z

leading to

SB=(Xl,z); max (r1 ,r2 ) < Jzj< r + r,

C {(xl,z); Ilzil <max (rl,r}2)

On BUC, for x, fixed

f(x2)g2 (x2 ) - f(xl)g2 (xl )

uniformly, and

n F, - f(x 1 )V(r i )

n F12 - f(x l )V(r l ,r 2 ,z)

where

V(r l ,r 2,z) :fdy

llyll r, , ;jy-zjj r,
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Therefore

nI 2  3.r (e xV 1 2 1Z -1) dz]e fx)Vr 1 V2 )] (x) 2(x) f2 (x)dx

A simpler argument gives

n1 3 --. j .V(max(rr 2 )e 
1 2CVrl 1 (x )] 2 (x)92 ( x)dx

In both integrals, make the substitution V(r!) =f(x)V(r.) and add the

limits together to get the proposition.
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4. A Central Limit Theorem

The main result of this section is

Theorem 4.1: Suppose the set of discontinuities of h has Lebesgue measure

0 in E(m ) x [0,-) and

sup hi = IhIl <
x,d

Then if the density of the distribution satisfies A(i)-(iii),

1 n 2
(4.2) h (XjD N(O,o2(h)

where a2 (h) is given in Theorem 3.5.

The proof proceeds in a series of propositions.

Notational convention:

Lower case c denotes a constant depending only on m and UlhIl. The

dependence-of other constants on various auxiliary parameters introduced

below will be noted as needed.

Proposition 4.3: There exists a sequence of bounded sets CN C E(m) with

CN CCN+l such that

1) diameter(CN) < N

2) inf f(x) 5 N > 0
XECN

3) P(XeC ) 0

Proof: There exist compact sets AN CAN+l such that IAf dx 1-+ 1. Chjose

5N > 0 such that N dx 0. Let

NA N

F N x; f(x) >6
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and take CN : AN n FN. Then

so JCfN f-+ N

In preparation for the next step, let DN be a cube of side N such

that CN C DN. Divide DN into L = (k)m congruent subcubes 0N,Z' Z=l,...L,

and let

B =  DN, Z n CN , = ,...,L

= U 3(BZ)

where 3 denotes boundary. The B,, Z=l,...,L provide the basic cells such

that nearest neighbor links between different cells will be cut. From now

on until the end of the string of propositions N and the B., Z=I,...,L

will be fixed.

Select dN > 0 and let

EN = {x; xECN' d(x,B) >dN}

where d(x,B) is the distance from x to the set B. Write (X,D) for (X1 ,D1n).

Note that by using f(x) < sup f(x) = we get
X

P(XECN, d(X,B) <dN) < 2mdNLl/mNm'l

Now let

h(x,d) = I(xEEN)h(x,d)

We suppress dependence on N, L here and in the sequel except where

emphasis is needed. Denote (recalling that h = h -Eh, h = h -Eh),

Zn /-n 1 h (X ,j
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Zn (NL) -1n h*(X ,D)

Proposition 4.4: E(Z-z(N,L))2 <c(P(XE
n n

Proof: This follows directly from corollary 2.15.

For the next step, define

0 if X B., no other X. E B

inf IIXi-Xj1l if X. E Bz

X iEB

and redefine h(x,O) 0. Let D! n 1/mR! and

Zn(NL) nI h*(XjsD)
331

Proposition 4.5: E(Z n(N,L) -Zn(N,L)) 2 < cne nl)sNV(dN) where EN > 0

depends only on N.

2 1 2
Proof: E(Zn (N,L) -Zn(N,L)) <- E( j Aj)

< EA

where

Aj h(Xj,Dj) - h(Xj,D.) - E(h(Xj,Dj) -h(Xj,Dt))

so

E(Zn(N'L) -Z'(N'k))2 < j E(h(Xj,Dj -N(X_ ,D')) 2

Now X E EN and d(Xj,B) > R. implies R'. R. So

E(Zn(N'L) -Z'(NL)) 2 < 211h112  j P(Rj R', XjEEN)

< 211hII2 nP(d(X,B) <R, XEEN)
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where (X,R) stands for (XIRIn) by our usual convention. Now

P(R>r X=x) = [1 -F(S(x,r))]n-I

Note that d(X,B) < N/m for X E EN. Now

inf inf [F(S(x,r))/V(r)] E N > 0
xECN O<r<m N

since M(r,x) F(S(x,r))/V(r) is jointly continuous on [0,/m N] xCN1 where

CN is the closure of CN1 and since M(r,x) > 0 everywhere in CN X [O,'rm N].

Therefore

S -(n-I)E:N V(d(x,B) )fxd

P(R>d(X,B), XEEN) < e f~x )dx

N

For x E EN9 d(x,B) > dN, so

P(R >d(X,B), XEEN < e (- :NVdN

and the proposition follows.

For the next step, put B : CC, and denote

P(XeD ) = pZ , Z 0O,,.,L

so L= p= 1. (Assume that for every Z, pz > 0, otherwise delete B,.)

Let
= #(X EBZ)

so the (no,. .. ,nL) have a multinomial distribution with parameters

(Po' .... PL). Consider the following construction: draw numL n0 5 ... nL,

ZnZ = n from a multinomial distribution with parameters (po, ... PL Then

put n points X Z), i =1,...,n into B using the distribution
iz

F z(dx) =P(X Edx!XEB,,)
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Denote by P the joint distribution of X ), i =l,...,n,, let RiZ) be the

nearest neighbor distance to X(Z) from the other points in B., and

= n]/mR '). Put

z~ h(X Z, D Z), nt > 1

R T

Sn < 1

Then

L T2 z- h(X3 ,D1)

Proposition 4.6: There are constants yn,Z' 2=1,...,L such that yn,Z -Z

and _ z 2 < C(Z) <
O ~E(E(T ,ln ) - ETz - (n2 -En )yn, ) _ ~z

where C(Z) is independent of n.

Proof: Oefine

. W(rlx,n): P t(n1mR > r :X

[ Il -F z(S(x,rn-1 /m))]nz-1

*Note that

E(T.In) = nzfh(xr)W(drlx,nZ)FZ(dx)

Xn(rlx) = W9z(rlxnp Z)

= [1 -F 2(S(x,rn-/m))]

and suppressing the dependence on L, let

'4 n  = (nZ- np Z )/(np - )

Then

W (rlx,n ) -

z 0 n
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Then

W (drlxln ) = np'-I ×n ×n(dr Ix)

n n
1= (n+ l)Xn dXn

n n n

where d X - n(drfx). This is zero for un = -1, so we eliminate this set

in the expectations to follow. Writing n, = (npC.-l)1+npZ leads to the

expression

)2 in X
(4.7) E(TIn,) = np,(l+mn) -n dXndP" "n(l+ n)fhnd ndP Z

The expectation of the square of the second term in (4.7) above is bounded

by C llhII 2,/n, and is henceforth ignored.

Next, expand

2Un I_ + 'nlo 2 n
Xn n logx n + (log Xn)X n

where 0 < e < 1, and substitute into the first term of (4.7). We assert

that all terms contzining a power of un higher than one have squares whose

expectations are uniformly bounded in n. For example

OZ )2 < (np,) 2IIhIIEU4 < Clh l 12(,l p )
2

(np) 2 E~i2 fh(log n Xn n -

and 2, )2 h(l 2 81n d 2

<(np ) 2L n n  og 2 ×n 1 )  I( og X1n d dP 22 2 4 2 4 4 >n

Illl(n )[U(n U f)(log Xn)2Xn dnddPJl

< 2Ilhl 2 (np) 2[E{u (l+un  ; -1 <Un<O} + E(i n(l+I); In >0}]
<_C zIlhii2

Therefore

(4.8) E(TQInZ) : npzZ h(l+un(2 +o n))d'n dPz, + 02(1)
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so

(4.9) E(T In) -ETZ, npi 1  fh(2 +log x)dxn dP~+ 2 l

*.where 0 2(l) in (4.8) and (4.9) denote quantities such that

sup E(02(1)) 2 < -. Letting the y n,2 of the proposition be defined by
n

yn,2 f J( 2 +log X)dn dPZ

The proof will be completed by showing that the integral on the right above

* . converges. For x fixed, Xn(rix) is a non-increasing function of r such

that for x E Int(B Z)

Xn~~x -. f(x)V(r) x(rix)

Since h(x,r) is a.s. continuous with respect to dXO dP z then

rh dX dPz- dXO dPZ

Now let

-X(rlx) =(1 -log X (rlx))Xn(rIx)

so that

Xn(drjx) =-(log X (rjx))X (drlx)

For x E Int(B Z)

Rn (r~x) 0+( +f(x)V(r))ef-)r =0 O(r~x)

and so

(4.10) f jhOog Xn )dX n dP z --- jdxO dP z



42

Proposition 4.11: . = n [E(TIn,)-E(T,)] N( , ,L)

XT- where
2  2 2

--. 1 LN, 2 P 2 Z

Moreover, n E(a:l 2In.)-E ,L"
E(~lE(T£nZ)ETZ)1 N,L

Proof: Clear from the preceding proposition.

It is useful to recall the dependence of parameters on N and L at this

point.

Proposition 4.12: Let

(4.13) Un_ 1 (T T

2Then there is a constant sN,L < such thatN .s sL

E Un n , . , L )  L I N,L "

Proof: Given n = nl,...,nL, the terms in the sum for U n are independent.

Thus

E(U lnl,...,nL) = n7Var(T In,)

and

Var(Tzlnz) : n.Var(h(X1),D 1))In,)

+ n£(nZl)Cov(h(X z) D( )),h(X£),DM )) nz Z, _CI 1

it is then sufficient to show that

[, ~~ ~~~ VaW(l)'l)' as.-

Var(h(X D1 )In L1  constant

rn Cov(h(X(Z) ,D(Z)),h(X(),D Z))!n,) a2 constant
1 2 1

r
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This result can be gotten through a simple modification of propositions 3.7

and 3.10.

Now we are ready for the final steps. We can write

(4.14) Z(N,L) : Un  + Vn

with Un defined in (4.13) and

nn Vn 1LEVn =l [E (T In ) -E

By = we mean equality in distribution when Un and Vn have the joint distribu-

tion we have implicitly given them. Denote e2 = P(XEE ).

Proposition 4.15: If a2 = limn Var(Zn), then

l2 -S2 +2 e+2vc
a-(N,LaN ,L) I ~cN + lcN

Proof: By propositions 4.4 and 4.5

(4.16) E(Zn -Z (N,L)) 2 < ceN
n

Use the inequality

2 -2 'N L 12 ?(4.17) JEZ n EZn (N,L)I < EIZ Z (N,L)I + 2/E(Zn) E(ZnZn(NL))2

and take n-- to get the result.

Proposition 4.18: Let a : max pz and take Itl < c-I  Note that a depends
z

on both N and L. Let gn (t;N,L) denote the characteristic function of Z'(N,L).

Then - G2 + 2 L)t 2/2
-(N,L+SN, 13

li7m I gn (t;N,L) -e I < ca t,
n

Thn 2,2
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it(Un+V)

Proof: g (t;N,L) =E e

=E(e itV nEeitU n,) n (O--nL

Given n, U j AV, with the Az independent and havinq the conditional

distribution of T -E(T.In.) given n.. Hence

i tun , j i tA
E(e nW)=rt~t f(t W Ele LI)

Applying corollary 2.3 to A.,

where c k will denote constants depending only on m, 11h11, and e k will be

quantities such that _e 1. Then

1 f (t)I < t (A .In) < (c2 t n /n)z

Temporarily restrict t to the range ItIa c1  /2. Define

Bn (max(n /n) <2 max p Inzz

On B 11 -f W 1) < 1/4, hence

log f Z(t) =logrl - (1 -f Zjt))]

-E ~ (A z n)z + a c j(n /n) 32+ 'c t(n /n)2

So

IN z (t) =exp(~-y-E(Aln,,) +An)
z

3
where, since It Ia < 1
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I c2 [t 3  / (n/n) 31 2 + c3t 4  (n9 /n) 2

< c2It 31 +c3 t41a2 < c4 t 3

Therefore
le n_11 < c 51tI 3 0

and so, denoting an E( 2Un)
-B2t 2 /2

I Tf (t) -e n I < c51tj 3
-3 1/2

holds on Bn for all t such that It3 I ':S , and Itla < c /2. Write

it(U +Vn) c)it(Un+Vn)

gn(t;N,L) = E(I(Bn)e n + E(I(B )e
n n n

Since P(Bc ) -O, the second term goes to zero, so

itV-Bt/2

Ti--m gn(t;N,L) -Ee n n c5 t 3 l

Combining this with propositions 4.11 and 4.12

'-s2 a2 )t 2/2

7- Ign(t;N,L) -e NL ,Lt < c5 1 3 •

To complete the proof we need only remove the restriction tla < c 1 /2/2.

But this can clearly be done by increasing the constant c5.

The stage is now set for the proof of Theorem 4.1. By (4.16)

li---n Ig~ t -g (t;NL)l < lim n  Elexp{i't(Zn-Zn(N,t)} -11 < Itl CeN

where g n (t) is the characteristic function of Z . So, by proposition 4.18,

22 2 2
(4.19) -~~I t exp{-(sN2L+aL)1111 < c(Itl3a + !tl/e)

7n In~t _,
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3
for It3 < 1. Now let N-., L-*c in such a way that a--0 and eN--O.

By proposition 4.15, if eN- --O, uniformly in L,

limN (s2  2 G2

Since the restriction !t < a 1 is satisfied eventually for any fixed t,

as a- 0 we conclude that, for all t,

2 2

limn gn(t) : e-0 2t2/2

and (4.1) follows since the equality of 2 and 2(h) is derived from the

moment convergence theorem 3.5.

By considering linear combinations of h's it is clear how the results

can be generalized to provide a multidimensional central limit theorem, and

the moment convergence theorem 3.5 can be easily modified to give the

limiting form of the covariance matrix.

4

-4
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5. The Process H(t) and Goodness-of-Fit

First, a Glivenko-Cantelli type theorem is established for H(t).

Let

34 g(x) > 0

I g(x) 0

and define a d.f. H by,

Et(X) 0 < t <1

* (5.2) H(t)=

and

(5.3) =HOl) -HO-) =PCg(X1 ) 0]

Note that if fug, then a=0 and H is the d.f. of the uniform distribution

Theorem 5.4: If A(lii) holds, as r-,

*(5.5) sup JtH(y) (Y)l as. 0

Proof: We begin by showing,

(5.6) H(y) H(y) a.s. Y' 0 < y <1

and

(5.7) H(1-) -a - H(1-), a.s.
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To prove (5.6) note that by corollary 2.3,

PCIH(y) - EH(y)i >&3 = O(n2)

and hence by the Borel-Cantelli lemma,

(5.8) H(y) - EH(y)- 0 a.s. Y 0 < y <

Assertion (5.6) then follows by using (3.7) to show that

SH(y) H(y). Next (5.7) is an immediate consequence of the S.L.L.N

To complete the proof of the theorem, let

A-0,0<y<1^. H(l-) -

(5.9) H (y) H

1 , y>l

and define H similarly in relation to H. By (5.6) and (5.7) H converges in

law to H with probability 1. But H is continuous and hence by Polya's

theorem,

(5.10) sup yH*(y) - H*(y): a " 0

ana (5.5) follows from (5.10) and (5.7).
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Dei.:ie a s:ochas'4c rocess 3n LC,] by,

Fn(5.11) ZH'(:) < - H(t , _ < 1

and a :or-esponding Gaussian process Z wirth mean C whose -ovariance notion

"((s,:), s <t, is def-ined by

,5.12) -((s,t,) ffs'( -fft) - (-og PfS fff Z S7

log s log .ftfjsf) + log Sf(.st)f +f.s f(7T'ws,tw)-")w1 .
B(s ,t)

(e write X, f for X(x), f(x) etc.)

where

3(s,: ; {w: r _ Iwl < r r

log 7s,,w dz

S(01,r ) S S(w, r.)

*where

V(r1 ) -log s

'V(r2) -lo

-f=g, then ".s,:), s < :, reduces -z

0
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(5.13) '/(s,) =s -st(l + log t log s log t)-Stf&(St,w)-i)dw

Clearly the processes Z n(-) can be identified with probabilizy

measures on D[0,1] and it will follow as a consequence ofour proo-f tnatl

Z(-) can be as well. in fact, if a~ 0, 7(.) has a.s. continuous sample

functions. Our main result is

Theorem 5.14: Suppose that A and B hold. Thnen,

z n z

in the sense of weak convergence in OFO,ll where Z is as above and has a.s.

continuous sample functions.

* Before giving the proof we state and prove the corollary of greatest

interest to us.

Let

S,. = J (Ht) EHt)) d

0

Corollary 5.15: ~fzfa and A holds, tot- 5, and 5, ter. t~ ~aw t

7 f 2,,, dt where has covariance Func-: on 15.13'
o
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The corollary is, for S0 , an immediate consequence of Theorem 5.2. By

writing

S1 =f Z' (H1 (t)) dt
0 n

we see that the corollary follows in this case from Theorems 5.1 and 5.2.

Notes: 1) The theorem can be extended to the case a > 0 by a conditioning

argument as in Section 2. Of course the Z process is then continuous only

on E0,l) and has a jump at 1.

2) It is not possible in Theorem 5.1 to replace EH in the defini-

tion of Zn by H. Although EH(t) - H(t), the difference is of the order of
-2
n m and will not be negligible for m > 3.

Proof of Theorem 5.14: We begin by establishing the tightness of the Z

n
sequence using the 4th moment bound proven in Section 2. Let Rl ,...,Rn be

as in Section 2 and recall that

1

Di = nm Ri,  i=l,...,n

Lemma 5.16: If A(iii) and B hold, the sequence of processes (Zn} is tight in

0(0,1] and any weak limit point is in CCO,l].
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Proof: We use a device due to Shorack (1973).

Note that:

Zn () = n ((< -T0 t) - P((x.)D < -log t
n Km 1 1 K

where Km is the volume of the unit sphere in Em. Let

Q (t ) -n G -ot)

where Gn is given in corollary 2.5. Note that by B and the dominated

convergence theorem Gn is continuous. For given 6 > 0, let t1 <...<tK be

such that,

Qn(ti) = 1 < i < K

where K6 < 1 < (K+I) .

Let
Zn(t) z n(t i ) + 'Q(t)-Qn(ti) nt~ )Znt

for t t i+ l  0 < i < K, to =O, tK+l=1

Note that

z*(0) = Zn(1) = 0

An elementary application of corollary 2.5 shows that,

*~ 4 2(5.17) E(Zn() - 1()) < nM(Qn(t)-Qn(s)) all S,

In

i . * ~ . - - - - - - - - -
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where M depends on i but is independent of n. Since, under A(iii) and B,

dominated convergence unplies that for each y,

Gn(Y) W f(x) -exp I IF g~ ) dx

a continuous probability distribution; it follows from a slight modification

of 3iilingsley ((1968), Theorems 12.3 and 12.4) that Z n: is tight and that

all limit points of {Zn} are in C[O,l].

Next note that

* : (5.18) supt!Zn (t)-.n(t)l < max sup(lZn(t)-Zn (ti)!: ti  < t < ti 1}

+ .yn (sup{jQ(t)Q(t): ti < t < ti+l})IZn(ti+l)-Zn(ti)I: 0 < i < K

1max{ [Zn(ti+l)-Zn(ti)l + (EHn(ti+l)E n(ti))

+ Zn( ti+ ) - Zn (t i ) !  0 < i < K}

using the monotonicity Of Hn(.), EHn() Qn(

0 Next note that integrating (2.8) for j=O, implies that for C independent of n, 5,

-V E(Hnkti+l)-Hn(ti)) < C *n(Qn(ti+l)-Cn(ti))! <

Hence,

(5.19) suPtlZ (t) Z(t)i < 2 max{Z (tij ) Z (ti) : 0 < i < K} + CS

But in view of (5.17), some elementary inecualiies give
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(5.20) P[max{!Z*(t il)-Z(ti)[: 0<i <K} > ]

-4 K 2<0E< -M :(Qn(ti )-Qn(ti) < M - 0
~i=0 n i+l n 1 -

By (5.18)-(5.20) for each 6 > 0, C independent of 3

(5.21) P[suptlZn(t)-Z*n(t)I >2C61] -- 0

Since {Z*} is tight for each 6, (5.21) implies tightness of {Zn} and a.s.

continuity of all limit points. (See, for example, Theorem 4.2 of

Billingsley (1968). Note that the dependence of Z* on 5 is immaterial.)n

Asymptotic normality of (Zn(t1 ),..,Zn(tn)) follows from the represen-

tation given in the introduction,

z n(t) -1?in h*(XiD.)

with

h(x,d) = I(exp{-q(x)V(d)} <t)

and the multivariate extension of theorem 4.1. Similarly the formulae

(5.11) and (5.12) for y(s,t) may be obtained after tedious calculations

from the appropriate straightforward qneralizations of proposition 3.10.

As an immediate consequence of theorem 5.4 and corollary 5.15 we have

Theorem 5.22: The tests which reject when S1 > c(a) where

Pg IJ 0Z2(t)dt> c(()} =

asymptotically have level a for H: f=g and are consistant aaainst all f q q

which satisfy A and B.
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Proof: That the tests have level a is immediate from corollary 5.15. We

check consistency for SO.

Note first that if f g

(5.23) (H(t)- t)2dt > '

--

If not, since H(e- s ) is the Laplace transform of X(XI) and equals e-s a.e.,

then Pf[X(Xl) =1] 1, implying f g a.e. Write

S0 = IIZ2(t)dt + 2vn' Zn (t) (t) )dt n (EfH(t)-EH(t)) 2dt
0 ~ JogJO f

Then

J Z (t)dt = 0 (1)
0l n p

/ z (t)(E f t) -E 9 (t))dt = 0 (v

nf(EfH(t)-Eg(t)) dt n (H(t)t)2dt = O(n)

by (5.23). Therefore,

PSO  ----- 0

a n and consistency follows.

Note: In his thesis M. Schilling (1979) has made a far reaching investigation

of the power of this and related tests against contiguous alternatives, has

constructed tables of the asymptotic null distribution of S0 for m : 1 and

and has studied the efficiency of the large m and n approximation through

simulation.
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APPENOIX

In this appendix we give the statements and proofs of several lemmas

of a technical or computational nature which are used in the previous

sections. We begin with a key lemma due to Stone (1977).

Lemma S: For each m and norm H there exists a(m) < such that it is

possible to write Rm as the union of a(m) disjoint cones CI ,...,Ca with 0

as their common peak such that if

x, y e Cjx,yOO, then tIx-yJI < max( 1xjj , Ijy[Y), j-l,...,a(m)

*. The following straightforward modification of Stone's argument shows

that the lemma is valid for any norm.

Proof: By compactness of the surface of the unit sphere ;S(O,1) we can
find Cl""'Ca(m) disjoint sets such that,

(i) u ) ;S(0,)

(ii) x, y C C. > I x-yl < 1

Let

C. X >X ~ . 0}, 4-1l...... -(m)
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Suppose x = Xx, y =lj, x, y e C.., Suppose w.Z.o.g. X < 7.Then,

Ilx-yIj 711T X-Y11 Ii( ! -- L~YI < HyHl

The following are easy corollaries of leniii S.

Corollary Si: For any set of n distinct points, x1,...,X~ in Rm, x, can be

the nearest neighbor of at most a~(m) points.

Corollary S2: 'f Cll***'C (i) are as in lemmna S, yo is arbitrary, x E=Cy,

* then

The following consequence of S2 is needed for the proof of 1enna, A2 but

is of independent interest.

Theorem Al: Let Y be a random m vector with distribution G, density g, and let

Ybe a fixed point,

Q =G(S(Y,IIY-y0~j))

Then,

(A.2) PCQ I q] .1 a(m) q, 0 < q 1

Proof: First let Yo = 0 and let G.i be the conditional

distribution of YJY eCi and pi - G(C1), where the Cj are given by corollary

S2. Then,

(A.3) PCQ I q] = {pj PEQ i qfY cCj :p.j0
3I
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But Y E C. implies by corollary S2 that

Hence, for p, > 0.

(A.4) PEQ<q IY EC < PEG.(S(O,I1Y11) < q/pj Y ECj J

since, given Y E Ci, G.i(S(0,IYII)) has a uniform distribution on (0,1). (A.2)

and (A.3) imply (A.1) if yo = 0. For the general case shift everythinq by yo

and apply corollary S2 in full generality.

Corollary A5: If Q is as in theorem A.1, r > 0

E(l-Q) rQ < M(r+1Y2

where M depends only on m.

Proof: Since 0 < Q < 1 we may w.l.o.g. take r > 2. By integration by parts

E(l _Q)rQ =fP[Q<q{(,_,.)r +rq(l.q) r-l dq}

21-
<cL(m)r q(1-q )dq

< -~-)3 - w r-l
0_M dw

4< M r+1Y-2

We proceed to lemmas A6 and A10.
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Lemma A6: Let

= Fx. # x

A i l

i2= Xi Xi  , Ri  i

i =3 Ji = or J=2]
i3 -

Then

(A.7) PCFiJ]<Mr+ M (S Vj

(A.83) Prrlj Flk 3 <_ M F- 'I g k

i2

Proof: All these estimates follow by symmetry arguments as in the proof

of lemma 2.27. We prove one of the estimates of (A.8) as an examPle.

Note that we may without loss of generality take r <_ n/4 (say). Then

n-r n-r
(A.9) 1 P[I 1F3] < [(n-r)(n-r-l)]'I I (Fi2) i. (l(J i =k+( i :k)

i=l k=l

< 8a(m)n 2E(N+r)

by corollary SI. But

8a(m)n 2E(N-r) < F3) 2 )

Clearly the bounds (A.7) and (A.8) are overestimates in this case. We

nave written the lemma in this way :or comoaczness.

4
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Lemma A1O: With the same definitions for j = 1,2,

(A.11) E I(Fl) M (1 F2(S)

(A.12) E I(Flj) F(S1 ) <M( + (S)

(A.1) Er(F1 ~ F(S < 4 +PF(S))

Proof: a) j = 1

E - F(S) (1+ (1) F(S))

E I(Fll) F(S1) P(F11 ) EF(S 1) F(S)n

Let

Ri  mi - 1 I <j < n-r, j i i

Then,

I(FII)F(S l) <EI(FII)F(S(XI,RI))

< (n-r) "I F(S)(1-F(S)) + F2 (S)

The bounds (A.11 -A.13) are immediate for r < n/4 and trivial (for large

enough M) for r > n/4.
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.. b ) j = 2

E F12  F = - ) PCF 12  I ] < 2.0) EN(N+r)12 12 nn- r-7)

<_M F(S) + FZ(s)

for r < n/4 and (A.11) follows.

To prove (A.12) begin by writing,

(A.14) E (FI2) F (S1) <E I(Xl = X1,RI < RI)F(Sl)
~r

+ E I(X = XlRlo > Rlc)F(SI) + : E I(X1 = 19RIo > 11X1 - x jI)F(Sj)
j=l

where,

RIO min(X - X1 1 x X, jil, 1 <j <n-r}

Rlc = min{IXI - i1 : j X, j-l, 1 <j <_n-r}

:4 Then, we bound

E(X Nx)F(SI) =S
(A.15) E 1(X1 = X,.R1 < R)F(SI) < E X(S)

1 1

-o
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Next,

* (A.l16) XI 'RX > R~R1  ~ )F(S,)

E{PEF5(S(X1,Rl0)) > FSSXRc ) ,)RJN1]F((,Rl)IX,-,

=EC(1-FS(S(Xl,Rlc)))lF S(S(XlR c))I(Xl=X1)]

where K n-r-N

< ENJ l-) n2~dw = (n-r)(n-r-l)Y1E
0

SM 11 F(S)
n

for r< n/4.

The next to last inequality follows since, given X1  X 1 and N, FS(X ,Rl) is

distributed as the minimum of N uniform (0,1) variables. Finally, arguing

as above,

(A.17) E I(X 1 2 X1,R 10 > IfX1 - x1II)F(S1 )

)K-1S~E(l-FX11)SF(X1 ( 'Ili I- 'jl l~x~l
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Given X1 - XI , we can apply corollary A.1 noting that s(S(XI,( XIX)

has the distribution of Q with G a FS' xj ' Yo" Since conditionally K-i

has a binomial (n-r-l, 1-F(S)) distribution, we obtain as a bound for (A.17),

(A.18) ME(K 2  XIX I )  3M(I-F(S)) (n-r)2

Therefore, we obtain

(A.19) riEI(XI-XiRlo0 > lXl-xjj)F(Sl) <M + F(S)

for r <n ,F(S) 1

Combining (A.15), (A.16) and (A.17) we obtain (A.12) for j =2, since the

restrictions on r and F can be absorbed into M for the final bound.

Finally,

(A.20) E I(FI12)S l .E I(XI=XI,R l < RI)F(S l ) + E (XIjX,Xj IXjI)F(XRo)

The first term in (A.20) has been bounded in (A.14) and (A.19). The

second is bounded as in (A.15) by

F(S) E(<IX I )  <M F(S) ,, (S)
K n

r < n/4. (A.13) follows for j-2 and the lemma is proved.
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